3.5.31 \(\int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [431]

3.5.31.1 Optimal result
3.5.31.2 Mathematica [A] (warning: unable to verify)
3.5.31.3 Rubi [A] (verified)
3.5.31.4 Maple [B] (verified)
3.5.31.5 Fricas [A] (verification not implemented)
3.5.31.6 Sympy [F(-1)]
3.5.31.7 Maxima [B] (verification not implemented)
3.5.31.8 Giac [F]
3.5.31.9 Mupad [F(-1)]

3.5.31.1 Optimal result

Integrand size = 30, antiderivative size = 527 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \sqrt {2} e^{7/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {2} e^{7/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i e^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i e^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

output
-1/2*I*e^(7/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*se 
c(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)/a^(3/2)/d*2^(1/2 
)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/2*I*e^(7/2)*ln(a+2^( 
1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x 
+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)/a^(3/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1 
/2)/(a+I*a*tan(d*x+c))^(1/2)+I*e^(7/2)*arctan(1-2^(1/2)*e^(1/2)*(a-I*a*tan 
(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)*2^(1/2)/a^(3/2)/d/ 
(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-I*e^(7/2)*arctan(1+2^(1/ 
2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+ 
c)*2^(1/2)/a^(3/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+4/3 
*I*e^2*(e*sec(d*x+c))^(3/2)/a/d/(a+I*a*tan(d*x+c))^(3/2)
 
3.5.31.2 Mathematica [A] (warning: unable to verify)

Time = 4.27 (sec) , antiderivative size = 357, normalized size of antiderivative = 0.68 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\frac {e (e \sec (c+d x))^{5/2} (\cos (d x)+i \sin (d x))^3 \left (\frac {4}{3} i \cos (2 d x) (\cos (c)+i \sin (c))+\frac {4}{3} (\cos (c)+i \sin (c)) \sin (2 d x)-\frac {2 \left (\text {arctanh}\left (\frac {\sqrt {1+i \cos (c)-\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {-1-i \cos (c)-\sin (c)} \sqrt {1+i \cos (c)-\sin (c)}-\text {arctanh}\left (\frac {\sqrt {1-i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {i+\tan \left (\frac {d x}{2}\right )}}\right ) \sqrt {1-i \cos (c)+\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)}\right ) (\cos (2 c)+i \sin (2 c)) \sqrt {i+\tan \left (\frac {d x}{2}\right )}}{\sqrt {-1-i \cos (c)-\sin (c)} \sqrt {-1+i \cos (c)+\sin (c)} \sqrt {i-\tan \left (\frac {d x}{2}\right )}}\right )}{d (a+i a \tan (c+d x))^{5/2}} \]

input
Integrate[(e*Sec[c + d*x])^(7/2)/(a + I*a*Tan[c + d*x])^(5/2),x]
 
output
(e*(e*Sec[c + d*x])^(5/2)*(Cos[d*x] + I*Sin[d*x])^3*(((4*I)/3)*Cos[2*d*x]* 
(Cos[c] + I*Sin[c]) + (4*(Cos[c] + I*Sin[c])*Sin[2*d*x])/3 - (2*(ArcTanh[( 
Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] + 
Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 + I*C 
os[c] - Sin[c]] - ArcTanh[(Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/ 
2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos 
[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[2*c] + I*Sin[2*c])*Sqrt[I 
 + Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c 
]]*Sqrt[I - Tan[(d*x)/2]])))/(d*(a + I*a*Tan[c + d*x])^(5/2))
 
3.5.31.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 420, normalized size of antiderivative = 0.80, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {3042, 3981, 3042, 3980, 3042, 3976, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3981

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {e^2 \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {i \tan (c+d x) a+a}}dx}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {e^2 \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {i \tan (c+d x) a+a}}dx}{a^2}\)

\(\Big \downarrow \) 3980

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {e^3 \sec (c+d x) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)}dx}{a^2 \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {e^3 \sec (c+d x) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)}dx}{a^2 \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 3976

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \int \frac {\cos (c+d x) (a-i a \tan (c+d x))}{e \left (a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\int \frac {a+\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}+\frac {\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\int \frac {1}{-\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}-1}d\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int \frac {1}{-\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}-1}d\left (\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}+1\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\int \frac {a-\cos (c+d x) (a-i a \tan (c+d x))}{a^2+\cos ^2(c+d x) (a-i a \tan (c+d x))^2}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\sqrt {e} \left (\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {e} \left (\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}\right )}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {a}-\frac {2 \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {2} \sqrt {a} e}+\frac {\int \frac {\sqrt {a}+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a-i a \tan (c+d x)} \sqrt {a}}{\sqrt {e} \sqrt {e \sec (c+d x)}}+\frac {\cos (c+d x) (a-i a \tan (c+d x))}{e}}d\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}}{2 \sqrt {a} e}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {4 i e^5 \sec (c+d x) \left (\frac {\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} \sqrt {e}}}{2 e}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\)

input
Int[(e*Sec[c + d*x])^(7/2)/(a + I*a*Tan[c + d*x])^(5/2),x]
 
output
(((4*I)/3)*e^2*(e*Sec[c + d*x])^(3/2))/(a*d*(a + I*a*Tan[c + d*x])^(3/2)) 
- ((4*I)*e^5*((-(ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/( 
Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/(Sqrt[2]*Sqrt[a]*Sqrt[e])) + ArcTan[1 + (Sq 
rt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]/ 
(Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e) - (-1/2*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]* 
Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*T 
an[c + d*x])]/(Sqrt[2]*Sqrt[a]*Sqrt[e]) + Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e] 
*Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a* 
Tan[c + d*x])]/(2*Sqrt[2]*Sqrt[a]*Sqrt[e]))/(2*e))*Sec[c + d*x])/(a*d*Sqrt 
[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])
 

3.5.31.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3976
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-4*b*(d^2/f)   Subst[Int[x^2/(a^2 + d^2*x^4), x] 
, x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b, d, 
e, f}, x] && EqQ[a^2 + b^2, 0]
 

rule 3980
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_ 
.)*(x_)]], x_Symbol] :> Simp[d*(Sec[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt 
[a + b*Tan[e + f*x]]))   Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*x]], 
 x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]
 

rule 3981
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*d^2*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + 
 f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Simp[d^2*((m - 2)/(b^2*(m + 2*n))) 
Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[ 
{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] 
 && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (IntegersQ[n, m + 
1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]
 
3.5.31.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 919 vs. \(2 (421 ) = 842\).

Time = 15.14 (sec) , antiderivative size = 920, normalized size of antiderivative = 1.75

method result size
default \(\text {Expression too large to display}\) \(920\)

input
int((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
(1/6+1/6*I)/d*e^3*(e*sec(d*x+c))^(1/2)/(tan(d*x+c)-I)^2/a^2/(a*(1+I*tan(d* 
x+c)))^(1/2)/(1/(cos(d*x+c)+1))^(1/2)/(cos(d*x+c)+1)*(-12*I*cos(d*x+c)*arc 
tanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2) 
)+3*I*sec(d*x+c)^2*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1 
/(cos(d*x+c)+1))^(1/2))-4*I*tan(d*x+c)*sec(d*x+c)*(1/(cos(d*x+c)+1))^(1/2) 
+6*I*tan(d*x+c)*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/( 
cos(d*x+c)+1))^(1/2))+12*I*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x 
+c)+1)/(1/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-3*I*tan(d*x+c)*sec(d*x+c)*arct 
anh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2) 
)+12*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+ 
1))^(1/2))*cos(d*x+c)+12*sin(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/ 
(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-4*I*tan(d*x+c)*(1/(cos(d*x+c)+1)) 
^(1/2)-4*I*(1/(cos(d*x+c)+1))^(1/2)-4*I*sec(d*x+c)*(1/(cos(d*x+c)+1))^(1/2 
)+9*I*sec(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(1/( 
cos(d*x+c)+1))^(1/2))+6*arctanh(1/2*(-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c) 
+1)/(1/(cos(d*x+c)+1))^(1/2))+6*tan(d*x+c)*arctanh(1/2*(cos(d*x+c)+sin(d*x 
+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-4*(1/(cos(d*x+c)+1))^(1/2) 
+4*tan(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)-6*I*arctanh(1/2*(cos(d*x+c)+sin(d*x 
+c)+1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-9*sec(d*x+c)*arctanh(1/2*( 
-cos(d*x+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(1/(cos(d*x+c)+1))^(1/2))-3*ta...
 
3.5.31.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.03 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {{\left (3 \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac {i \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} + 2 \, {\left (e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{3}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{3}}\right ) - 3 \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac {-i \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} + 2 \, {\left (e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{3}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{3}}\right ) + 3 \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac {i \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} + 2 \, {\left (e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{3}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{3}}\right ) - 3 \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac {-i \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} + 2 \, {\left (e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{3}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{e^{3}}\right ) + 8 \, {\left (-i \, e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, e^{3}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{6 \, a^{3} d} \]

input
integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fric 
as")
 
output
-1/6*(3*a^3*d*sqrt(4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a^3*d*sqr 
t(4*I*e^7/(a^5*d^2)) + 2*(e^3*e^(2*I*d*x + 2*I*c) + e^3)*sqrt(a/(e^(2*I*d* 
x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) 
)/e^3) - 3*a^3*d*sqrt(4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a^3*d 
*sqrt(4*I*e^7/(a^5*d^2)) + 2*(e^3*e^(2*I*d*x + 2*I*c) + e^3)*sqrt(a/(e^(2* 
I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2* 
I*c))/e^3) + 3*a^3*d*sqrt(-4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a 
^3*d*sqrt(-4*I*e^7/(a^5*d^2)) + 2*(e^3*e^(2*I*d*x + 2*I*c) + e^3)*sqrt(a/( 
e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 
 1/2*I*c))/e^3) - 3*a^3*d*sqrt(-4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log 
((-I*a^3*d*sqrt(-4*I*e^7/(a^5*d^2)) + 2*(e^3*e^(2*I*d*x + 2*I*c) + e^3)*sq 
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I 
*d*x + 1/2*I*c))/e^3) + 8*(-I*e^3*e^(2*I*d*x + 2*I*c) - I*e^3)*sqrt(a/(e^( 
2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/ 
2*I*c))*e^(-2*I*d*x - 2*I*c)/(a^3*d)
 
3.5.31.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((e*sec(d*x+c))**(7/2)/(a+I*a*tan(d*x+c))**(5/2),x)
 
output
Timed out
 
3.5.31.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1466 vs. \(2 (401) = 802\).

Time = 0.67 (sec) , antiderivative size = 1466, normalized size of antiderivative = 2.78 \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxi 
ma")
 
output
1/12*(6*I*sqrt(2)*e^3*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c) 
, cos(3/2*d*x + 3/2*c))) + 1, sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c) 
, cos(3/2*d*x + 3/2*c))) + 1) + 6*I*sqrt(2)*e^3*arctan2(sqrt(2)*cos(1/3*ar 
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqrt(2)*sin(1/3*a 
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 6*I*sqrt(2)*e^3 
*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c 
))) - 1, sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c 
))) + 1) + 6*I*sqrt(2)*e^3*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3 
/2*c), cos(3/2*d*x + 3/2*c))) - 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - 6*sqrt(2)*e^3*arctan2(sqrt(2)*sin(1/ 
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(s 
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))), sqrt(2)*cos(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/ 
2*c), cos(3/2*d*x + 3/2*c))) + 1) + 6*sqrt(2)*e^3*arctan2(-sqrt(2)*sin(1/3 
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(si 
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))), -sqrt(2)*cos(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/ 
2*c), cos(3/2*d*x + 3/2*c))) + 1) + 3*I*sqrt(2)*e^3*log(2*sqrt(2)*sin(2/3* 
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*(sqrt(2)*cos(1/3*arctan2(si...
 
3.5.31.8 Giac [F]

\[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {7}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac 
")
 
output
integrate((e*sec(d*x + c))^(7/2)/(I*a*tan(d*x + c) + a)^(5/2), x)
 
3.5.31.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \]

input
int((e/cos(c + d*x))^(7/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)
 
output
int((e/cos(c + d*x))^(7/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)